Weak and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-I-Nonexpansive Mapping in Banach Space

نویسندگان

  • Farrukh Mukhamedov
  • Mansoor Saburov
  • Mohamed A. Khamsi
چکیده

We prove the weak and strong convergence of the implicit iterative process to a common fixed point of an asymptotically quasi-I-nonexpansive mapping T and an asymptotically quasi-nonexpansive mapping I, defined on a nonempty closed convex subset of a Banach space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.

متن کامل

Convergence theorems of an implicit iteration process for asymptotically pseudocontractive mappings

The purpose of this paper is to study the strong convergence of an implicit iteration process with errors to a common fixed point for a finite family of asymptotically pseudocontractive mappings and nonexpansive mappings in normed linear spaces. The results in this paper improve and extend the corresponding results of Xu and Ori, Zhou and Chang, Sun, Yang and Yu in some aspects.

متن کامل

Strong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings

In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space  with a uniformly G$hat{a}$teaux differentiable norm. Our result is applicable in $L_{p}(ell_{p})$ spaces, $1 < p

متن کامل

New three-step iteration process and fixed point approximation in Banach spaces

‎In this paper we propose a new iteration process‎, ‎called the $K^{ast }$ iteration process‎, ‎for approximation of fixed‎ ‎points‎. ‎We show that our iteration process is faster than the existing well-known iteration processes using numerical examples‎. ‎Stability of the $K^{ast‎}‎$ iteration process is also discussed‎. ‎Finally we prove some weak and strong convergence theorems for Suzuki ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009